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Abstract—As prominent real-time safety-critical reactive control
techniques, Control Barrier Function Quadratic Programs (CBF-
QPs) work for control affine systems in general but result in
freezing problems (or local minima) in social navigation and
consequently cannot ensure convergence to a goal. Here, we
propose on-manifold Modulated CBF-QP controllers to realize
local-minimum-free reactive obstacle avoidance for control affine
systems in general. We validate our methods by simulating our
robot in static and dynamic human crowds using an underactuated
robot modeled as a unicycle. Modulated CBF-QP outperforms
CBF-QP, and MPC-CBF in all experiments, ensuring both safety
and task completion.

I. INTRODUCTION

Social robot navigation deals with the motion of robots
through crowded human environments. This continues to remain
a challenging problem for safe control design [1] due to the
robot “freezing” along its path. The “freezing robot problem”
(FRP) intuitively describes scenarios where the robot stops
or starts oscillating indefinitely when the obstacle avoidance
module cannot find a collision-free trajectory forward [2, 3, 1].
Over the years, many works have been proposed to reduce FRP
in social navigation by either improving the human motion pre-
diction module or the obstacle avoidance strategy. The authors
of [2] approach FRP by modeling human-robot interaction
during the path planning phase, where both pedestrians and
the robot cooperate to adjust their path. Prior work from [4]
identified that human clusters standing between the robot and
the target may potentially lead to a robot freezing problem,
and proposed the idea of designating a Potential Freezing
Zone (PFZ), a conservative spatial zone where the robot might
freeze and be obtrusive to humans. The authors then proposed a
solution to avoid PFZ constructed from convex approximations
of estimated cluster positions. Moreover, [5] dynamically shifts
between the three policies of Go-Solo, Follow-other, and Stop
using Multi-Policy Decision Making.

Existing literature has demonstrated empirically the effect
of concave obstacle or concave-geometry cluster’s impeding
effects on target reaching for various obstacle avoidance mod-
ules. For example, [4] acknowledges that deep-reinforcement-
learning-based obstacle avoidance policy leads to freezing prob-
lems when multiple humans cluster in a C-shaped formation.
[6] discusses how Control Barrier Function (CBF) controllers
get stuck at the saddle regions when two circular obstacle
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Fig. 1: Real-life experiment using MCBF-QP to reduce freezing
problem in social navigation facing pedestrians moving in
groups.

regions overlay partially into a concave geometry. However,
few controllers have been designed to efficiently circumvent
arbitrary concave obstacle geometries given any control affine
robot system. Frozone filter in [4] does not explicitly take
into consideration the robot model and actuation limits, and
is not applicable when the initial location of the robot is
inside its computed PFZ. While Mod-DS approach in [7] can
eliminate saddle region formation facing concave obstacles but
is restricted to fully actuated robot dynamics.

To address FRP and realize robust navigation facing human
clusters of any geometry in social navigation for any control-
affine system, we propose on-manifold Modulated CBF-QP
controllers by combining CBF-QPs, the safety filter adaptable
to control affine system in general, with Mod-DSs, the
closed form obstacle avoidance approach capable of efficiently
circumventing concave obstacles in fully-actuated system [7].
If properly tuned, the proposed Mod-based QP method is able
to eliminate geometry-originated freezing problems in highly
interactive environments. Additionally, on-manifold Modulated
CBF-QP methods, like CBF-QP, are applicable to control-affine
systems in general.

II. PRELIMINARIES

A. Definition of Safety in Social Navigation

In this work, we define the notion of robot safety and
generate safe control algorithms based on boundary functions.
Given a continuously differential function ho for an obstacle o
in the detected obstacle set O, state x ∈ Rd and obstacle state
xo ∈ Rd′

, ho : Rd × Rd′ → R is a boundary function if the
safe set Co (outside the obstacle), the boundary set ∂Co (on
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the boundary of the obstacle), and the unsafe set ¬Co (inside
the obstacles) of the system are defined as in (1), (2), (3) [8].

Co = {x ∈ Rd, xo ∈ Rd′
: ho(x, xo) > 0} (1)

∂Co = {x ∈ Rd, xo ∈ Rd′
: h(x, xo) = 0} (2)

¬Co = {x ∈ Rd, xo ∈ Rd′
: h(x, xo) < 0} (3)

In practice, ho(x, xo) is often measured as the distance
from the controlled agent to the obstacle surface boundary, i.e.
the signed distance function. Given environments defined by
boundary functions, the goal of a safety-critical controller is to
generate an admissible input u that will ensure that the state
of the robot x is always within the safe set C defined in (4)
and eventually reach a target state.

C = {x ∈ Rd, xo ∈ Rd′
: ho(x, xo) > 0,∀o ∈ O}. (4)

B. Control Barrier Functions

In CBF-QP formulation, the boundary function ho(x, xo)
is also called the barrier function. Control Barrier Functions
are designed by extending Nagumo set invariance theorem
to a “control” version [8], where the condition ∀x ∈ ∂Co is
rewritten mathematically using an extended K∞ function α,

Co is set invariant ⇐⇒ ∃u s.t. ḣo(x, xo, ẋo, u)

≥ −α(ho(x, xo)).
(5)

Control barrier functions can be generalized to any nonlinear
affine systems of the form,

ẋ = f(x) + g(x)u (6)

where x ∈ Rd, xo ∈ Rd′
, u ∈ Rp, and f, g are Lipschitz

continuous. The CBF condition in (5) can be used to formulate
a quadratic programming problem that guarantees safety by
enforcing the set invariance of the safety set Co defined in
(1). For general control affine systems, CBF-QP is defined
as in (7b), where Lf and Lg are the Lie derivatives of ho.
Lfho = ∇xho · f(x) and Lgho = ∇xho · g(x).

ucbf = argmin
u∈Rp

(u− unom)
⊤(u− unom) (7a)

Lfho(x, xo) + Lgho(x, xo)u+∇xoho(x, xo)ẋo

≥ −α(ho(x, xo)) ∀o ∈ O (7b)

C. Local Minimum and Freezing Problem

In social navigation, the term ”freezing robot problem”
(FRP) includes all scenarios where the robot stops or starts
oscillating indefinitely facing obstacles. FRP occurs either when
the obstacle avoidance module fails completely as no action
can prevent the robot from entering unsafe regions in the next
timestep or when, despite being feasible, the solver cannot
generate a path that reasonably circumvents the surrounding
obstacles due to potentially the concavity of the obstacle
geometries. In the field of reactive safe controllers, researchers
are interested in the latter group of FRP, which they refer as
local minima or saddle points [9, 7]. In CBF-QPs, a local
minimum occurs when ẋcbf = f(x) + g(x)ucbf = 0 due to

the safety constraints in (7b) even while the problem remains
feasible.

D. Research Statement

Define Ho(x, xo) to be an orthonormal basis spanning the
hyperplane tangent to the function ho(x|xo) at point x. Here
function ho(x, xo) is written as ho(x|xo) to indicate that
the tangent is taken with respect to robot state x only. By
definition, Ho(x, xo) and the gradient of the function ho(x, xo),
∇xh(x, xo), constitute an orthonormal basis that fully spans
the robot state space Rd. This means that local minimum issue
ẋ = 0 would only occur if and only if the projections of ẋ
onto Ho(x, xo) and onto ∇xho(x, xo) are simultaneously 0.
Therefore, we can formally define the geometry-originated FRP
in CBF-QPs as follows:

Given any robot’s initial state inside the safe region (4),
our aim is to prevent FRP by introducing tangent hyperplane
guidance into regular CBF-QPs, ensuring Ho(x, xo) · (f(x) +
g(x)u) ̸= 0 when ∇xho(x, xo)·(f(x)+g(x)u) = 0 is enforced
by the CBF-constraints in (7b), given any o ∈ O. Here f(x) +
g(x)u is the robot dynamics as defined in (6).

III. ON-MANIFOLD MCBF FOR CONCAVE OBSTACLE
AVOIDANCE

Standard CBF constraints ensure robot safety by regulating
ẋ projection onto the gradient direction ∇xho, which is
normal to the safe region ho defined, similar to closed-form
obstacle avoidance approach of on-manifold Modulation [7].
However, unlike CBF-QP that are easily trapped in saddle
points, on-manifold Modulation is able to eliminate undesirable
equilibrium by modulating the directions of ẋ projected onto
the hyperplane H(x, h̄), where h̄(x) is the combined barrier
function obtained by leveraging all boundary representations
{∀ho(x, xo), o ∈ U} close to the robot (subsection III-A).
H(x, h̄) is an orthonormal basis tangent to h̄(x).

The application of on-manifold Modulation is limited to
fully-actuated dynamical systems. Inspired by the on-manifold
Modulation, we construct on-manifold Modulated CBF-QPs
(MCBF-QPs) to achieve local-minimum-free safe control for
control affine systems in general, by introducing constraints on
ẋ’s projection onto the selected obstacle exit direction ϕ(x, h̄)
using (8). The parameter γ is a user-defined positive real
number, i.e. γ ∈ R+. Details of how ϕ(x, h̄) is derived can be
found in subsection III-B. The MCBF-QP is given below.

umcbf = argmin
u∈Rp

(u− unom)
⊤(u− unom)

Lfh(x, xo) + Lgh(x, xo)u+∇xo
h(x, xo)ẋo

≥ −α(h(x, xo)) ∀o ∈ O

ϕ(x, h̄)⊤f(x) + ϕ(x, h̄)⊤g(x)u ≥ γ (8)

The performance of on-manifold MCBF-QP in concave ob-
stacle environments is validated and compared with that of the
standard CBF-QP in Figure 3, assuming single-integrator robot
dynamics and unom = x−x∗ pointing from the robot state to the
target. As we will show in our results comparing the trajectories
of MCBF-QP and CBF-QP controllers, MCBF-QP eliminates
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local minima including those inside the Potential Freezing
Zone (regions half-surrounded by the C-shape obstacle).

A. Selective Cluster Formation

Given a set of obstacle U = {∀o|ho(x, xo) ≤ b}, where b
is the sensing range of the robot, the combined single obstacle
representation can be computed using the techniques proposed
in [7] as

h̄(x) = −1

ρ
log

(∑
o∈U

exp (−ρho(x, xo))

)
, (9)

where b is a threshold distance value, and ρ is a positive user-
selected constant. The smaller the value of ρ, the smoother the
edges in the distance field. Note that set U is not the set of
obstacles that are physically connected. Instead, the resulting
function h̄ can represent multiple discrete obstacles using a
single function.

B. Generalized Obstacle Exit Strategy for Control Affine System

Given combined boundary function h̄, the obstacle exit
direction ϕ(x, h̄) can be obtained as follows. Let e(0) be one out
of m uniformly sampled candidate directions in Rd, satisfying
the requirement in (10) and subject to e(0) /∈ N (H(x, h̄)).
Denote xi as the ith element in robot state x, i ∈ {1, 2, .., d}.

e(0) = [e
(0)
1 , e

(0)
2 , .., e

(0)
d ]⊤

e
(0)
i = 0 if

∂h̄

∂xi
= 0

(10)

A geodesic approximation method can then propogate the
candidate direction e(i) starting at i = 0 using (11), to construct
a first-order approximation of the obstacle surface. This first-
order approximation forms a path X = {x(0), x(1), ..., x(N)}
exiting the obstacle on its isosurface, where horizon N ∈ N is a
natural number [7]. Function ϕ(x, h̄) ∈ Rd then outputs, among
m candidate directions {e0}mk=0, the one with the smallest
associated potential P (N) from (12), where β is the step
size and p(x) is a user-defined reward function, as illustruted
in Figure 2. In most applications, p(x) can be a weighted
combination of the distance from x(i) to the target x∗ and the
value of h̄(x(i)).

x(i+1) = βH(x(i), h̄)H(x(i), h̄)⊤e(i) + x(i)

e(i+1) =
H(x(i), h̄)H(x(i), h̄)⊤e(i)

||H(x(i), h̄)H(x(i), h̄)⊤e(i)||2

(11)

P (i+1) = P (i) + βp(x(i+1)) (12)

IV. ROBOT EXPERIMENT

In this section, the obstacle avoidance performances using
MCBF-QPs proposed in section III are validated in underactu-
ated control affine systems using the differential-drive robot
(Fetch). We compare the performance of our proposed controller
with standard CBF-QP [8] and Model Predictive Control with
Discrete-Time Control Barrier Function (MPC-CBF) [10] in
2 social navigation scenarios through Python simulation at 20
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Fig. 2: Illustration of how the geodesic approximation strategy
propagates 20 uniformly sampled candidate directions e(0) to
form 20 paths Xs, and selects the optimal candidate ϕ(x, h̄)
to be e(0) that initiates the lowest penalty path, colored in red.

Hz. In the first scenario, we have humans, each modeled as a
cylinder of a constant radius of 0.5 m, standing in clusters of
various geometries in fixed locations. In the second scenario,
we add complexity to the navigation tasks by allowing humans
to be dynamic, banding, and disbanding from time to time.
Robot Fetch is modeled using the standard unicycle model as in
(13), derived from choosing a point of interest a > 0 m ahead
of the wheel axis of Fetch. px and py are robot locations in x
and y axis, and θ is the robot’s orientation in radians measured
with respect to the positive x axis. Lastly, we validated our
proposed method in real-life social navigation experiment using
the robot Fetch to avoid a 3-person cluster while reaching the
target. We used Vicon trackers to acquire real-time human
positions and velocities for the hardware experiment.

ẋ =

ṗxṗy
θ̇

 =

cos θ −a sin θ
sin θ a cos θ
0 1

[v
ω

]
(13)

The control barrier function h(x, xo) for the shifted unicycle
model is defined as follows, where xo = [pxo , pyo ]

⊤ is the
position of the human and cr is the radius of the approximated
cylinder.

ho(x, xo) =
√
([px; py]− xo)⊤([px; py]− xo)− cr (14)

A. Results

In Python simulations, the trajectories produced by standard
CBF-QP and the proposed MCBF-QP are illustrated in Figure 4
and Figure 5. At each point in time, MCBF-QP utilizes geodesic
approximation in subsection III-B to evaluate potential exit
paths X = {x(0), x(1), ..., x(N)} alongside the blue isoline
depicted in the first row images of Figure 5. The best e(0)

candidate, i.e. ϕ(x, h̄), resulting in the smallest penalty value
P (N) is visualized as the red arrow. In the static scenario,
MCBF-QP reaches the target location in an efficient trajectory
while the V-shape formation of the crowds traps CBF-QP
and MPC-CBF. In the more challenging dynamic social
navigation test, MCBF-QP, guided by the exit direction ϕ(x, h̄),
successfully circumvents the shifting and deforming cluster
of humans, while CBF-QP and MPC-CBF end up colliding
with the closing-up crowds. Therefore, we demonstrate that in
comparison to the standard CBF-QPs, the proposed MCBF-QP
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Fig. 3: Performance of on-manifold MCBF-QP (a) and CBF-
QP (b) in single star-shaped (first row) and non-star-shaped
(second row) obstacle avoidance with no robot input con-
straints. Performance of MCBF-QP in multi-concave obstacle
avoidance(third row, (a): without input constraints, (b): with
robot input constraints of ||umcbf||2 ≤ 2), given γ = 1. Lastly,
pictures on the fourth row show the effects of γ sizes on the
resulted safe trajectories ((a): γ = 0.1, (b): γ = 10).

is more robust and successfully alleviates the freezing problem
in social navigation.

In real-life hardware validation, we successfully reproduce
the dynamic simulation’s result using MCBF-QP to navigate
around a dynamic cluster formed by 3 humans walking
together. As suggested in Figure 1, MCBF-QP is capable of
circumventing concave human clusters in social navigation
without inducing robot freezing problems.

V. CONCLUSION

In this work, we proposed MCBF-QP that can successfully
alleviate local minimum issues under the freezing robot
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Fig. 4: Comparison of the trajectories generated by regular
CBF-QP and the proposed MCBF-QP, CBF-QP and MPC-CBF.
MCBF-QP managed to avoid the human crowds gathering
together with an efficient path, while CBF-QP and MPC-CBF
froze.

Fig. 5: Comparison of MCBF-QP (first row), CBF-QP (second
row) and MPC-CBF (third row) with a horizon size of 20
performances in a challenging dynamic social navigation task.
The blue contour lines in the first-row images indicate the
isosurface geodesically approximated to select the proper
obstacle exit strategy ϕ(x, h̄), depicted as the red arrow.

problem. The current obstacle avoidance controller is limited
without incorporating human motion prediction into the control
pipeline. As a result, the controller cannot guarantee that the
generated trajectories are the most efficient and will never
lead to future freezing problems in dynamic environments. To
improve our approach, we plan on incorporating the obstacle
avoidance module of MCBF-QP with human motion prediction
using neural networks.
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